The Combinatorics behind Number-Theoretic Sieves
نویسنده
چکیده
Ever since Viggo Brun's pioneering work, number theorists have developed increasingly sophisticated re nements of the sieve of Eratosthenes to attack problems such as the twin prime conjecture and Goldbach's conjecture. Ever since Gian-Carlo Rota's pioneering work, combinatorialists have found more and more areas of combinatorics where sieve methods (or M obius inversion) are applicable. Unfortunately, these two developments have proceeded largely independently of each other even though they are closely related. This paper begins the process of bridging the gap between them by showing that much of the theory behind the number-theoretic re nements carries over readily to many combinatorial settings. The hope is that this will result in new approaches to and more powerful tools for sieve problems in combinatorics such as the computation of chromatic polynomials, the enumeration of permutations with restricted position, and the enumeration of regions in hyperplane arrangements. 3
منابع مشابه
Boolean information sieves: a local-to-global approach to quantum information
We propose a sheaf-theoretic framework for the representation of a quantum observable structure in terms of Boolean information sieves. The algebraic representation of a quantum observable structure in the relational local terms of sheaf theory effectuates a semantic transition from the axiomatic set-theoretic context of orthocomplemented partially ordered sets, a la Birkhoff and Von Neumann, t...
متن کاملSome results on the complement of a new graph associated to a commutative ring
The rings considered in this article are commutative with identity which are not fields. Let R be a ring. A. Alilou, J. Amjadi and Sheikholeslami introduced and investigated a graph whose vertex set is the set of all nontrivial ideals of R and distinct vertices I, J are joined by an edge in this graph if and only if either ann(I)J = (0) or ann(J)I = (0). They called this graph as a new graph as...
متن کاملA Note on Explicit Ramsey Graphs and Modular Sieves
In a previous work [4] we found a relation between the ranks of codiagonal matrices (matrices with 0's in their diagonal and non-zeroes elsewhere) and the quality of explicit Ramsey-graph constructions. We also gave there a construction based on the BBR-polynomial of Barrington, Beigel and Rudich [1]. In the present work we give another construction for low-rank co-diagonal matrices, based on a...
متن کاملSome results on a supergraph of the comaximal ideal graph of a commutative ring
Let R be a commutative ring with identity such that R admits at least two maximal ideals. In this article, we associate a graph with R whose vertex set is the set of all proper ideals I of R such that I is not contained in the Jacobson radical of R and distinct vertices I and J are joined by an edge if and only if I and J are not comparable under the inclusion relation. The aim of this article ...
متن کاملCombinatorics 3 - Combinatorial Number Theory
“Combinatorial number theory”, in very loose terms, can be described as an area of mathematics which is a cross between combinatorics and number theory. More precisely, the area concerns structures of integers (or similar sets), with some number theoretic properties, which can be studied mainly by combinatorial means, rather than, for example, by algebraic methods. This area really only truly e...
متن کامل